Orbit around a Heavy Mass is to Thay

will refer to UFT149 and earlier papers to Thay

dynamics is Thay are governed by the two fundamental
conservation equations:

\[\frac{dH}{dt} = 0 \quad - (1) \]
\[\frac{dL}{dt} = 0 \quad - (2) \]

where \(H \) and \(L \) are the Hamiltonian and angular

while \(H \) and \(L \) appear

\[H = m(r) Vmc^2 - m(r) \frac{MmG}{r} \quad - (3) \]
\[L = \frac{m(r) Vmc^2}{\phi} \quad - (4) \]

Here \(V \) is the generalized Lorentz factor:

\[V = \left(m(r) - \frac{r^2 + r^2 \phi}{m(r)c^2} \right)^{-1/2} \quad - (5) \]

and the potential energy is:

\[U = -m(r) \frac{MmG}{r} \quad - (6) \]

In the plane polar coordinate system \((r, \phi)\), in

the plane polar coordinate system \((r, \phi)\), the mass \(m \) as the mass \(M \) in a

plane, separated by a distance \(r \), and \(G \) is Newton's

constant.

Note carefully that these equations do not

depend on the Einstein field equation.

Using computer algebra it can be shown that:
\[
\ddot{r} - \frac{\ddot{r}}{r} = \frac{\text{d}m(r)}{\text{d}r} \left(\frac{c^2 m(r)}{r} + \frac{m_6}{2 Y^3 \gamma^2 \gamma m(r)^{1/2}} - \frac{3c^2}{2Y^2} \right)
\]

\[
- \frac{1}{m(r)} \frac{\text{d}m(r)}{\text{d}r} \left(\frac{2 - M_6}{2 Y c \gamma m(r)^{1/2}} \right) + \frac{M_6}{Y c \gamma m(r)^{1/2}} - \frac{\ddot{r}}{r}
\]

The mass of \(m \) about \(M \) is obtained by solving eqs. (7) and (8) numerically.

In the Newtonian limit they reduce to:

\[
\ddot{r} - \frac{\ddot{r}}{r} = - \frac{M_6}{r^2}
\]

and

\[
\ddot{r} + 2 \ddot{\phi} r = 0
\]

To simulate the investigation it is possible to increase \(M \) to near infinity, and first solve eqs. (9) and (10) numerically for instance. The solutions to eqs. (9) and (10) are given by

\[
r = \frac{d}{\cos \phi}
\]

where \(d \) is the half light ray at \(\phi = \frac{\pi}{2} \), and \(e \) is the eccentricity.

The Hamiltonian for eqs. (9) and (10) is:

\[
H = \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\phi}^2) - \frac{m M_6}{r}
\]
and the specific angular momentum is:
\[L = m s^2 \phi \] - (13)

The half light latitude is:
\[\lambda = \frac{L}{m^2 M s^2} \] - (14)

and the eccentricity is given by:
\[e^2 = 1 + \frac{2 H L}{m^2 M s^2} \] - (15)

The orbital velocity is:
\[v^2 = M s^2 \left(\frac{a}{r} - \frac{1}{a} \right) \] - (16)

where
\[a = \frac{\lambda}{1 - e^2} \] - (17)

For an elliptical orbit:
\[0 < e < 1 \] - (18)

and for hyperbola:
\[e > 1 \] - (19)

Using these equations it is possible to graph the orbit as:
\[M \to \infty \] - (20)

If \(m \) remain finite,
From eq. (14), \[\lambda \to 0 \] as \(M \to \infty \) - (21)

From eq. (15), \[e \to 1 \] as \(M \to \infty \) - (22)

From eq. (11), \[r \to 0 \] as \(M \to \infty \) - (23)
(1) \(\text{For eq. } (16): \quad v \rightarrow \infty \) \\
\(M \rightarrow \infty \)

So the ellipsoidal body shrinks to a point and the orbital velocity of \(m \) about \(M \) approaches infinity. These characteristics could be graphed and/or animated, and are independent of mass \(m \), becoming at rather short distances, not apparent in the equations of motion (9) and (10).

The equations are true for all photons of mass \(m \). This is a beam of light, captured by an observer in space in the vicinity of \(M \), so an observation of space in the vicinity of \(M \) would produce a dark area.

All the characteristics of a "black hole" can be reproduced by graphics based on the above Newtonian equations. Once the light is trapped by the pseudo-gravitational mass \(M \), its escape velocity is given by:

\[
\frac{1}{2} mv^2 = \frac{MM_0}{r} - (25)
\]

\[
v = \left(\frac{2MM_0}{r} \right)^{1/2} - (26)
\]

So in Newtonian dynamics the light is trapped and can never escape.

When the complete equations (7) and (8) are considered, it is to the next note, a variety of orbital behaviors become possible, notably precession, as is in UFT 419. This will be considered in the next note.