Calculation of Precession due to a Rotating Object

As noted, the force per unit mass f is:

$$ f = -\nabla \phi - \frac{\partial \mathbf{a}}{\partial t} \quad (1) $$

$$ = -\nabla \phi + \omega \times \mathbf{r} \quad (2) $$

so the vacuum force is:

$$ f_{(\text{vac})} = \omega \times \mathbf{r} - \frac{\partial \mathbf{a}}{\partial t} \quad (3) $$

The rotational angle is:

$$ \psi = \pi \left(3 + \frac{\partial f^{(1)}}{\partial r} \right)^{-1/2} - (4) $$

As in UFT03, the total rotational angle, for example:

$$ \Delta \phi = \frac{1}{2} \left(\frac{\omega}{r} - \frac{\partial \omega}{\partial r} \right) \quad (5) $$

and

$$ \omega = |\omega| \quad (6) $$

$$ -\frac{\partial \mathbf{a}}{\partial t} = \omega \times \mathbf{r} \quad (7) $$
The magnitude of the spin connection is:

$$\omega = \frac{2}{3} \left(\frac{1}{\Delta \phi} \left(\frac{<S_x \cdot S_x >}{r^3} - \frac{1}{3r} \frac{d}{dr} <S_z \cdot S_z > r \right) \right)$$

where $<S_x \cdot S_x >$ is the isotropically averaged fluctuation of the vacuum (factored out already). Therefore:

$$\Delta \phi = \frac{4}{3} \left(\frac{<S_x \cdot S_x >}{r^3} - \frac{1}{3r} \frac{d}{dr} <S_z \cdot S_z > r \right)$$

From eq. (7):

$$\omega \phi = -\frac{1}{2} |Q_{(Total)}|$$

In previous papers of the UFT series the laser-lightning effect was developed with the gravitomagnetic field:

$$\Omega = \frac{6}{c^2 r^3} \left(\frac{3m_g \cdot S_x}{r^2} - m_g \right) = \frac{6}{2c^2 r^3} \left(\frac{3L \cdot S_x}{r^2} - L \right)$$

where

$$m_g = \frac{1}{2} \frac{L}{r}$$

is the gravitomagnetic dipole moment and L the angular momentum of the earth.

By definition:

$$\Omega = \nabla \times \Omega_{(Total)}$$

So:
\[
\Omega_{(\text{total})} = \frac{G - mg \times r}{c^2} = \frac{G}{2c^2} \frac{L \times r}{r^3} \quad -(14)
\]

Therefore:
\[
|\Omega_{(\text{total})}| = \frac{G}{2c^2} \frac{L \times r}{r^3} \quad -(15)
\]

By vector algebra:
\[
L \times r \cdot L \times r = L^2 r^2 - (L \cdot r)^2 \quad -(16)
\]
\[
= (L \cdot L)(r \cdot r) - (L \cdot r)(L \cdot r) \quad -(17)
\]

So:
\[
|\Omega_{(\text{total})}| = \frac{G}{2c^2} \left(L^2 r^2 - (L \cdot r)^2 \right)^{1/2} \quad -(17)
\]

So:
\[
\frac{d}{dt} |\Omega_{(\text{total})}| = \frac{G}{2c^2} \frac{d}{dt} \left(\frac{1}{r^3} \left(L^2 r^2 - (L \cdot r)^2 \right)^{1/2} \right) \quad -(18)
\]

In Cartesian coordinates:
\[
\mathbf{v} = \frac{d\mathbf{s}}{dt} \quad -(19)
\]

is orbital velocity. So
\[
\mathbf{v} = \frac{d\mathbf{s}}{dt} \quad -(20)
\]
If \(\mathcal{E}(\tau) = \frac{1}{r^2} \left(\frac{L}{2} - (L \cdot \tau)^2 \right)^{1/3} \), then

\[
\frac{d\mathcal{E}(\tau)}{dt} = \frac{dr}{dt} \frac{d\mathcal{E}(\tau)}{dr}.
\]

Then

\[
v \frac{d}{ds} \left(\frac{1}{r^2} \left(\frac{L}{2} - (L \cdot \tau)^2 \right)^{1/3} \right) - \frac{c}{2c^2} \]

and

\[
\frac{d}{dt} |\mathcal{E}(\text{total})| = 6v \frac{d\mathcal{E}(\tau)}{dr} - \frac{c}{2c^2}.
\]

From eqs. (10) and (23):

\[
\omega \phi = - \frac{6v}{2c^2} \frac{d\mathcal{E}(\tau)}{dr} - (24)
\]

where

\[
\phi = - \frac{\mathcal{E}(\tau)}{r} - (25)
\]

so

\[
\omega = - \frac{c v}{2c^2} \frac{d\mathcal{E}(\tau)}{dr} - (26)
\]

If the sign of \(\omega \) is reversed in eq. (1), then

\[
\mathcal{E}(\tau) = - \frac{1}{r} \phi - \omega \phi - (27)
\]

and

\[
\omega \phi = \frac{d}{dt} |\mathcal{E}(\text{total})| - (28)
\]

so

\[
\omega = \frac{c v}{2c^2} \frac{d\mathcal{E}(\tau)}{dr} - (29)
\]
The precession in radians per second is given by

$$\Delta \phi = \frac{r}{2} \left(\frac{c - \frac{2c}{r}}{r} \right) - (30)$$

In Gravitic Prede B for example, r is the distance from the centre of the Earth to the spacecraft, and V is its orbital period. Here, M is the mass of the Earth and c is the speed of light. The angular velocity of the Earth is taken from UFT 117 - UFT 119 and UFT 145:

$$L = 2 \frac{M r_E^2 \omega_E}{5}$$ - (31)

where M is the mass of the Earth, r_E is the Earth's radius, ω_E is its angular velocity.

$$M = 5.98 \times 10^24 \text{ kg}$$
$$r_E = 6.37 \times 10^6 \text{ m}$$
$$\omega_E = 7.292 \times 10^{-5} \text{ rad s}^{-1}$$ - (32)

For gravity Prede B:

$$r = 7.02 \times 10^6 \text{ m}$$ - (33)

On average, but varies in general. The constants are:

$$c = 2.998 \times 10^8 \text{ m s}^{-1}$$ - (34)
$$G = 6.67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$$ - (35)

Therefore $\Delta \phi$ can be evaluated with computer algebra. For a given r and V, the result adjusted to give agreement with experiment.

The precession is experimentally very tiny, so the Newtonian theory is an excellent approximation for
\(r = \frac{d}{1 + \epsilon \cos \phi} \quad - (36) \)

and

\[v^2 = \sqrt{6} \left(\frac{2}{r} - \frac{1}{a} \right) \quad - (37) \]

\[a = \frac{d^2}{1 - \epsilon^2} \quad - (38) \]

Here \(d \) is the half right ascension, and \(\epsilon \) is the ellipticity of the orbit of Earth about B.

If \(\mathbf{L} \) is perpendicular to \(\mathbf{r} \), expressionally, the

\[\mathbf{L} \cdot \mathbf{r} = 0 \quad - (39) \]

and

\[\omega = \pm \frac{5v}{2Mc^5} \frac{d}{dr} \frac{\mathbf{L}}{r^3} \]

\[= \pm \frac{vL}{2Mc^5} \quad - (40) \]

where \(L \) is the angular momentum in arc sec. The velocity in eqn. (40) is given by eqn. (37) and the angular momentum by eqn. (31). If it is assumed that

\[\epsilon \gg 1 \quad - (41) \]

then:

\[\omega \approx \frac{2}{5} \frac{\omega EV}{c^2} \quad - (42) \]

where the velocity of rotation of the Earth about its axis is:

\[v \approx 4.60 \times 10^5 \text{ m/s} \quad - (43) \]

Hence the magnitude of the spin can be given as
\[\omega \approx \frac{5}{2} \times \frac{7.292 \times 10^7}{2.998 \times 10^8} \times 4.60 \times 10^{-13} \ m^{-1} \]

\[= 3.0 \times 10^{-13} \ m^{-1} \]

From Eqs. (30) and (46) the precession is radians per second is:

\[\Delta \phi = \frac{r}{2} \left(\frac{\omega}{r} - \frac{d\omega}{dr} \right) \]

Taking the negative value of \(\omega \) in Eq. (46) then:

\[\frac{\omega}{r} = -\frac{L}{r^3} \frac{v}{M c^2} \]

and:

\[\frac{d\omega}{dr} = \frac{L}{r^2} \frac{d}{dr} \left(\frac{v}{r^3} \right) \]

\[= \frac{L}{r^3} \left(\frac{1}{r} \frac{dv}{dr} + \frac{v}{r} \frac{d}{dr} \left(\frac{1}{r^3} \right) \right) \]

\[= \frac{L}{r^3} \left(-2 \frac{v}{r} + \frac{1}{r^2} \frac{dv}{dr} \right) \]

So:

\[\Delta \phi = \frac{L r^2}{2 M c^2} \left(\frac{v}{r^3} + \frac{1}{r^2} \frac{dv}{dr} \right) \]

\[= \frac{L}{2 M c^2} \left(\frac{v}{r} + \frac{dv}{dr} \right) \]

If \(v \) is approximately constant:

\[v \approx 4.60 \times 10^7 \ m/s \]

\[\omega \approx 3.0 \times 10^{-13} \ m^{-1} \]
\[\frac{dv}{dr} = 0 \quad \text{(50)} \]

and

\[\Delta \phi \sim \frac{1}{5} \frac{\omega e v r}{c^2} \quad \text{(51)} \]

\[= 5.24 \times 10^{-13} \text{ rad per year} \]

2) Vectorial Method

This method is given in UFT 345, and gives

\[\Delta \phi \sim 3.18 \times 10^{-13} \text{ rad per year} \]

The experimental result from Gravity Probe B

is claimed to be

\[\Delta \phi \text{ (exp)} \sim 1.016 \times 10^{-13} \text{ rad per year} \quad \text{(52)} \]

An averaging method was used in UFT 345

to give precise agreement with experimental data.

The approximate result (51) from a vectorial method can be made exact using complex algebra,

and the averaging procedure used to give precise agreement with experimental data.