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s equation for ~ and substituting into Equation 7.68, we obtain 

v2 = - a2_,------------,-,--;;-(2n)2 1 - e2 cos2 1/J 
' (1 - e cos 1/1) 2 

= (2n) 2 
a2 1 +~:cos 1/J 

1: 1 - eCOS 1/J 

= (2n) 2 a2 2- (1 -~:cos 1/J) 
1: 1 - eCOS 1/J 

(7.70) 

g rja = 1 - e cos 1/J from Equation 7.58, there results 

Vi=C,nYa3G-~) (7.71) 

pier's Third Law (Equation 7.48) can be used to reduce this expres-

v2 = ~ (~ _ ~) 
f.1. r a 

(7. 72) 

wish to calculate (J(t) for the motion of a body whose orbit has an 
not too large (say, e ~ 0.1), and if we wish to achieve an accuracy of, 

in 106
, then many terms in Equation 7.54 are necessary. The use of 

uation in such a situation is somewhat easier. Astronomical cal­
f orbits are almost always based on Kepler's equation. Details of 
ion procedures for Kepler's equation can be found in various texts on 
chanics.* 

idal Angles and Precession (optional) 

: executes bounded, noncircular motion in a central-force field, then 
listance from the force center to the particle must always be in the 
~ r::?: r min• that is, r must be bounded by the apsidal distances. Fig­
cates that only two apsidal distances exist for bounded, noncircular 
t in executing one complete revolution in e, the particle may not 
; original position (see Figure 7-4). The angular separation between 
ive values of r = r max depends on the exact nature of the force. The 
en any two consecutive apsides is called the apsidal angle, and, since a 
t must be symmetrical about any apsis, it follows that all apsidal 
uch motion must be equal. The apsidal angle for elliptical motion, 

~0 methods of obtaining approximate solutions to Kepler's equation are discussed in 
)ee, for example, Moulton (Mo58, p. 164ft') for details. 
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for example, is just n. If the orbit is not closed, the particle reaches the apsidal 
distances at different points in each revolution; the apsidal angle is not then a 
rational fraction of 2n, as is required for a closed orbit. If the orbit is almost 
closed, the apsides precess, or rotate slowly in the plane of the motion. This 
effect is exactly analogous to the slow rotation of the elliptical motion of a 
two-dimensional harmonic oscillator whose natural frequencies for the x- and 
y-motions are almost equal (see Section 3.4). 

Since an inverse-square-law force requires that all elliptical orbits be exactly 
closed, the apsides must stay fixed in space for all time. If the apsides move with 
time, however slowly, this indicates that the force law under which the body 
moves does not vary exactly as the inverse square of the distance. This important 
fact was realized by Newton, who pointed out that any advance or regression of a 
planet's perihelion would require the radial dependence of the force law to be 
slightly different from 1/ r 2

• Thus, Newton argued, the observation of the time 
dependence of the perihelia of the planets would be a sensitive test of the validity 
of the form of the universal gravitation law. 

In point of fact, for planetary motion within the solar system, one expects 
that, because of the perturbations introduced by the existence of all of the other 
planets, the force experienced by any planet does not vary exactly asJ / r 2

, if r is 
measured from the sun. This effect is small, however, and only slight variations of 
planetary perihelia have been observed. The perihelion of Mercury, for example. 

. I 
whtch shows the largest effect, advances only about 574" of arc per century.*-
Detailed calculations of the influence of the other planets on the motion or-­
Mercury predict that the rate of advance of the perihelion should be approx­
imately 531" per century. The uncertainties in this calculation are considerably 
less than the difference of 43" between observation and calculation,t and for a 
considerable time this discrepancy was the outstanding unresolved difficulty in 
the Newtonian theory. We now know that the modification introduced into the 
equation of motion of a planet by the general theory of relativity almost exactly 
accounts for the difference of 43". This result is one of the major triumphs of 
relativity theory. 

We next indicate the way the advance of the perihelion can be calculated 
from the modified equation of motion. To perform this calculation, it is 
convenient to use the equation of motion in the form of Equation 7.20. If we use 

*This precession is in addition to the general precession of the equinox with respect to the "fixed" 
stars, which amounts to 5025.645" ± 0.050" per century. 

1Jn 1845, the French astronomer Urbain Jean Joseph Le Verrier (1811 - 1877) first called attention to 
the irregularity in the motion of Mercury. Similar studies by LeVerrier and by the English astronomer 
John Couch Adams of irregularities in the motion of Uranus led to the discovery of the planet 
Neptune in 1846. An interesting account of this episode is given by Turner (Tu04, Chapter 2). We must 
note, in this regard, that perturbations may be either periodic or secular (i.e., ever increasing with time). 
Laplace showed in 1773 (published, 1776) that any perturbation of a planet's mean motion that is 
caused by the attraction of another planet must be periodic, although the period may be extremely 
long. This is the case for Mercury; the precession of 531 " per century is periodic, but the period is so 
long that the change from century to century is small compared to the residual effect of 43". 



~NTRAL-FORCE MOTION 

:a! gravitational law for F(r), we can write 

d2u m 1 
d82 + u = - [2 u2 F(u) 

Gm 2M 
--~-2- (7.73) 

onsider the motion of a body of mass min the gravitational field of a 
1ass M. The quantity u is therefore the reciprocal of the distance 
and M. 
wdification of the gravitational force law required by the general 
·eiativity introduces into the force a small component that varies as 
Thus we have ' 

d2u Gm 2M 3GM 2 
d82 + u = -~-2- + ~u (7.74) 

the velocity of propagation of the gravitational interaction and is 
V'ith the velocity of light.* To simplify the notation, we define 

Gm 2M 
~=-~-2-

6 =3GM 
c2 

1 write Equation 7.74 as 

d2u 1 
d82 + u = ~ + 6u2 

(7.75) 

(7.76) 

)nlinear equation, and we use a successive approximation procedure 
solution. We choose the first trial solution to be the solution of Equa­
l the case that the term hu 2 is neglected t: 

1 
u1 = - (1 + ecos8) 

a 
(7.77) 

: familiar result for the pure inverse-square-law force (see Equa­
Note that a is here the same as that defined in Equation 7.40 except 

:he relativistic term results from effects understandable in terms of special relativity, viz., 
1/ 3) and the relativistic momentum effect (1 / 6); the velocity is greatest at perihelion and 
Jn (see Chapter 14). The other half of the term arises from general relativistic effects and 
with the finite propagation time of gravitational interactions. Thus the agreement 
y and experiment confirms the prediction that the gravitational propagation velocity is 
tat for light. 

:the necessity of introducing an arbitrary phase into the argument of the cosine term by 
neasure (} from the position of perihelion; i.e., u1 is a maximum (and hence r 1 is a 
f1=0. 
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that J1 has been replaced by m. If we substitute this expression into the right­
hand side of Equation 7.76 we find 

d2u 1 6 
d
8

2 + u = ~ + a2 [1 + 2E cos 8 + e2 cos 2 8] 

1 6 [ 
8

2 J = - + 2 1 + 2ecos8 + - (1 + cos28) 
a a 2 

(7. 78) 

where cos2 8 has been expanded in terms of cos 28. The first trial function u1 , 

when substituted into the left-hand side of Equation 7.76, reproduces only the 
first teFm on the right-hand side: 1/a. We can therefore construct a second trial 
function by adding to u1 a term that reproduces the remainder of the right-hand 
side (in Equation 7.78). We can verify that such a particular integral is 

' 6 [( 
8

2

) 
8

2 J uP= a 2 1 + 2 + e8sin8 - 6 cos28 (7.79) 

The second trial function is therefore 

u2 = u1 +uP 

If we stop the approximation procedure at this point, we have 

u ~ u2 = u1 +uP :> 

[
1 & J = ~(1+ e cos8)+a 2 8sin8 

+ - 1 + - - - cos 28 [ 
6 ( 82) &2 J 
a2 2 6a 2 (7.80) 

where we have regrouped the terms in u1 and uP. 
Consider the terms in the second set of brackets in Equation 7.80: the first of 

these is just a constant, and the second is only a small and periodic disturbance 
of the normal Keplerian motion. Therefore, on a long time scale neither of these 
terms contributes, on the average, to any change in the positions of the apsides. 
But in the first set of brackets, the term proportional to 8 produces secular and 
therefore observable effects. Let us consider the first set of brackets: 

1 [ . & J Usecular = ~ 1 + e COS 8 + -; 8 sin 8 

Next we can expand the quantity 

1 + E cos ( 8 - ~ 8) = 1 + E (cos 8 cos~ 8 + sin 8 sin~ 8) 

~ 1 + e cos e + & e sin e 
a 

(7.81) 

(7.82) 
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have used the fact that c5 is small to approximate 

c) 
cos-8~ 1, 

a 

can write usecular as 

. c) c) 
SIO- (} ~- (} 

a a 

Usecular ~ ~ [ 1 + t: COS ( (} - ~ fJ) J (7.83) 

ave chosen to measure (} from the position of perihelion at t = 0. 
appearances at perihelion result when the argument of the cosine term 

1creases to 2n, 4n, . .. , and so forth. But an increase of the argument by 
s that 

c) 
8--8=2n 

a 

(} = . 
2

n_ . ~ 2n ( 1 + ~) 
the effect of the relativistic term in the force law is to displace the 
in each revolution by an amount 

.1 ~ 2nc5 
a 

(7.84a) 

apsides rotate slowly in space. If we refer to the definitions of a and c5 

; 7.75), we find 

(GmM)2 

.1 ~ 6n _c_l_ (7.84b) 

ations 7.40 and 7.42 we can write F = J.1.ka(1 - e2
); then, since k = 

J.l. ~ m, we have 

,1 ~ 6nGM 
- ac 2(1 _ e2) (7.84c) 

refore that the effect is enhanced if the semimajor axis a is small and if 
·icity is large. Mercury, which is the planet nearest the sun and which 
ost eccentric orbit of any planet (except Pluto), provides the most 
:st of the theory.* The calculated value of the precessional rate for 

y, we can say that the relativistic advance of the perihelion is a maximum for Mercury 
>rbital velocity is greatest for Mercury and the relativistic parameter vfc largest (see 
nd Problem 14-35). 

7.10 STABILITY OF CIRCULAR ORBITS 271 

Table 7-2 
PRECESSIONAL RATES FOR THE PERIHELIA OF SOME 

PLANETS 

Precessional rate (seconds of arc/century) 

Planet Calculated Observed 

Mercury 43.03 ± 0.03 43.11 ± 0.45 
Venus 8.63 8.4 ± 4.8 
Earth 3.84 5.0 ± 1.2 
Mars 1.35 
Jupiter 0.06 

Mercury is 43.03" ± 0.03" of arc per century. The observed value (corrected for 
the influence of the other planets) is 43.11" ± 0.45",* so the prediction of 
relativity theory is confirmed in striking fashion. The precessional rates for some 
of the planets are given in Table7-2. 

7.10 Stability of Circular Orbits 
~ 

In Section 7.6 we pointed out that the orbit is circular if the total energy equals 
the minimum value of the effective potential energy, E = Vmin. More generally, 
however, a circular orbit is allowed for any attractive potential, since the 
attractive force can always be made to just balance the centrifugal force by the 
proper choice of radial velocity. Although circular orbits are therefore always 
possible in a central, attractive force field, such orbits are not necessarily 
stable. A circular orbit at r = p exists if r j, = P = 0 for all t; this is possible if 
(oVjor)j, =p = 0. But only if the effective potential has a true minimum does 
stability result. All other equilibrium circular orbits are unstable. 

Let us consider an attractive central force with the form 

k 
F(r) =- r" 

The potential function for such a force is 

k 1 
U(r) = ---·--n - 1 r<n - 1) 

and the. effective potential function is 

k 1 /2 

V(r) = --- ·-- + ­n- l r<n - 1) 2w2 

(7.85) 

(7.86) 

(7.87) 

*R. L. Duncombe, Astron. J. 61, 174 (1956); see also G. M. Clemence, Rev. Mod. Phys. 19, 361 (1947). 


